Drug Partitioning: Relationships between Forward and Reverse Rate Constants and Partition Coefficient

HUGO KUBINYI

Received February 28, 1977, from the Research Institute of KNOLL AG, D-6700 Ludwigshafen/Rhein, Germany.
Accepted for publication April 18, 1977.

Abstract

The rate constant, k_{1}, of drug transport from an aqueous phase to an organic phase and the rate constant, k_{2}, of the reverse process can be described as functions of the partition coefficient, $P: \log k_{1}=\log$ $P-\log (\beta P+1)+c^{\prime}$ and $\log k_{2}=-\log (\beta P+1)+c^{\prime}$. In a homologous series, where $\log P$ is a simple function of the number of CH_{2} groups, \log k_{1} and $\log k_{2}$ also can be described as functions of the number of CH_{2} groups. The relationships between these equations and current physicochemical models of drug absorption are discussed.

Keyphrases a Partition coefficients-relationship to forward and reverse rate constants and number of CH_{2} groups in a homologous series - Drug partitioning-relationship of partition coefficients to forward and reverse rate constants and number of CH_{2} groups in a homologous series

The partition coefficient, P, of a drug is an equilibrium constant defined in terms of the ratio of k_{1}, the rate constant of drug transport from the aqueous phase to the organic phase, and k_{2}, the rate constant of the reverse process, according to:

$$
\begin{equation*}
P=\frac{k_{1}}{k_{2}} \tag{Eq.1}
\end{equation*}
$$

It is possible to assess the individual rate constants, as shown by Lippold and Schneider (1-3), who determined k_{1} and k_{2} in homologous series using a three-compartment model (Table I).

THEORETICAL

From the data of Table I, it is evident that there must be additional

Figure 1-Rate constants k_{1} and k_{2} of the partitioning of homologous quaternary alkylammonium bromides; comparison of experimental values from a three-compartment system (no salt added) (1) and values calculated from Eqs. 8 and 9 (a, b, β, and c values from Table II).
relationships between k_{1} and k_{2} beside that expressed in Eq. 1. Examination of the data indicates that k_{2} is linearly related to k_{1} for the homologs previously studied (1-3); i.e.:

$$
\begin{equation*}
k_{2}=-\beta k_{1}+c \tag{Eq.2}
\end{equation*}
$$

Equations 3 and 4 can be derived for the dependence of either k_{1} or k_{2} on the partition coefficient, P, by substitution of Eq. 2 into Eq. 1, solving first for k_{1} (Eq. 3) and then for k_{2} (Eq. 4):

$$
\begin{align*}
& k_{1}=\frac{c P}{\beta P+1} \tag{Eq.3}\\
& k_{2}=\frac{c}{\beta P+1} \tag{Eq.4}
\end{align*}
$$

If Eqs. 3 and 4 are written in the logarithmic form, then Eqs. 5 and 6 result:

$$
\begin{align*}
& \log k_{1}=\log P-\log (\beta P+1)+c^{\prime} \tag{Eq.5}\\
& \log k_{2}=-\log (\beta P+1)+c^{\prime} \tag{Eq.6}
\end{align*}
$$

where the term c^{\prime} has been substituted for the constant, $\log c$.
Since, in homologous series, $\log P$ is a function of the number of CH_{2} groups, N (4):

$$
\begin{equation*}
\log P=a N+b \tag{Eq.7}
\end{equation*}
$$

Eqs. 5 and 6 can be rewritten in terms of the relationship expressed in Eq. 7:

$$
\begin{equation*}
\log k_{1}=a N-\log \left(\beta^{\prime} 10^{a N}+1\right)+b^{\prime} \tag{Eq.8}
\end{equation*}
$$

Figure 2-Rate constants \mathbf{k}_{1} and \mathbf{k}_{2} of the partitioning of homologous quaternary alkylammonium bromides; comparison of experimental values from a three-compartment system (sodium bromide added) (2) and values calculated from Eqs. 8 and 9 ($\mathrm{a}, \mathrm{b}, \beta$, and c values from Table II).

Table I-Experimental k_{1} and k_{2} Values from Lippold and Schneider (1-3) for Quarternary Alkylammonium Bromides and n Alkylsulfonates Using Three-Phase Model (Water-1-Octanol-Water)

N^{a}	Quaternary Alkylammonium Bromides								Benzilonium n-Alkylsulfonates	
	No Salt Added		Plus Sodium Bromide		Plus Sodium Butanesulfonate		Plus Sodium Trichloroacetate			
	k_{1}	k_{2}								
2	-	-	-	--	-	-	0.057	1.130	-	-
3	-	-	-	-	-	-	0.115	0.940	-	-
4	0.014	0.600	0.027	0.490	0.055	0.920	0.224	0.824	-	-
5	0.043	0.578	0.076	0.470	0.143	0.640	0.435	0.585	-	-
6	0.140	0.490	0.217	0.425	0.345	0.360	0.930	0.396	0.095	0.635
7	0.370	0.500	0.534	0.264	0.808	0.276	1.200	0.198	-	-
8	0.715	0.471	1.112	0.196	1.140	0.128	1.244	0.076	0.63	0.425
9	1.064	0.300	1.340	0.078	-	-	1.560	0.042	-	-
10	1.440	0.149	1.620	0.025	-	-	.		1.33	0.15
11	1.648	0.084	1.650	0.011	-	-	-	-	-	-
12	-	-	-	-	-	-	-	-	1.46	0.02

${ }^{a}$ Number of CH_{2} groups.
Table II-a, b, β, and c Values a, Calculated from k_{1} and k_{2} Values of Table I, Using Eqs. 2 and 7

Parameter	Quaternary Alkylammonium Bromides				Benzilonium n-Alkylsulfonates
	No Salt Added	Plus Sodium Bromide	Plus Sodium Butanesulfonate	Plus Sodium Trichloroacetate	
$k_{2}=-\beta k_{1}+c$ (Eq. 2) 0					
β	$0.296(\pm 0.07)$	$0.286(\pm 0.04)$	$0.612(\pm 0.56)$	$0.688(\pm 0.16)$	$0.430(\pm 0.15)$
c	$0.598(\pm 0.06)$	$0.480(\pm 0.04)$	0.770 ($\pm 0.36)$	$1.020(\pm 0.14)$	$0.686(\pm 0.16)$
n	8	8	5	8	4
r	0.975	0.989	0.896	0.975	0.994
s	0.047	0.032	0.161	0.100	0.038
F	115	267	12.3	114	153
$\log \frac{k_{1}}{k_{2}}=a N+b($ Eq. 7)					
a^{2}	$0.412(\pm 0.04)$	$0.501(\pm 0.02)$	$0.546(\pm 0.06)$	$0.420(\pm 0.02)$	$0.442(\pm 0.06)$
b	$-3.146(\pm 0.31)$	$-3.265(\pm 0.15)$	$-3.373(\pm 0.35)$	$-2.179(\pm 0.10)$	$-3.440(\pm 0.57)$
n	8	8	5	8	4
r	0.996	0.999	0.998	0.999	0.999
s	0.103	0.051	0.057	0.045	0.063
F	672	4036	918	3674	974

a The 95% confidence limits are given in parentheses.

$$
\begin{equation*}
\log k_{2}=-\log \left(\beta^{\prime} 10^{a N}+1\right)+c^{\prime} \tag{Eq.9}
\end{equation*}
$$

where b^{\prime} has been substituted for the constant $b+c^{\prime}$ and β^{\prime} has been substituted for $\beta \times 10^{6}$.

RESULTS AND DISCUSSION

If Eqs. 2 and 7 are applied to k_{1} and k_{2} values of Table I, the a, b, β, and c values given in Table II result. Log k_{1} and $\log k_{2}$ values can be calculated from these values using Eqs. 8 and 9; a comparison of observed and calculated $\log k_{1}$ and $\log k_{2}$ values is given in Table III and Figs. 1 and 2.

Either Eqs. 3 and 4 or Eqs. 8 and 9 are generally applicable for the

Table III-Comparison of Observed and Calculated $\log k_{1}$ and $\log k_{2}$ Values (a, b, β, and c Values of Table II Were Used to Calculate $\log k_{1}$ and $\log k_{2}$ from Eqs. 8 and 9 , Respectively)

	Quaternary Alkylammonium Bromides				Benzilonium n-Alkyl-sulfonates
	No Salt Added	Plus Sodium Bromide	Plus Sodium Butane-sulfonate	Plus Sodium Trichloroacetate	
$\log k_{1}$ values:	0.994	0.999	0.995	0.993	0.997
$\log k_{2}$ values:	0.992	0.997	0.955	0.996	0.999
$\log k_{1}$ and \log k_{2} values ${ }^{\text {a }}$					
n	16	16	10	16	8
r	0.994	0.999	0.984	0.995	0.998
s^{b}	0.068	0.040	0.092	0.060	0.047
F^{6}	335	1414	63	377	429

[^0] F values are only rough estimates because Eqs. 8 and 9 are nonlinear.
quantitative description of k_{1} and k_{2} values. Equation 3 corresponds to previous drug absorption models (5-14). However, all β values differ significantly from one, giving strong evidence for the validity of the diffusion models ($6-12$); other models $(5,13,14)$ predict $\beta=1$ for the in vitro system used by Lippold and Schneider (1-3). In all cases, the influence of molecular size effects on diffusion coefficients is negligible.

Equations 5 and 6 are special forms of the bilinear model $(15,16)$ derived recently for the quantitative description of the dependence of biological activity of drugs on their hydrophobic character.

REFERENCES

(1) B. C. Lippold and G. F. Schneider, Arzneim.-Forsch., 25, 843 (1975).
(2) Ibid., 25, 1683 (1975).
(3) B. C. Lippold and G. F. Schneider, Pharmazie, 31, 237 (1976).
(4) A. Leo, C. Hansch, and D. Elkins, Chem. Rev., 71, 525 (1971).
(5) T. Koizumi, T. Arita, and K. Kakemi, Chem. Pharm. Bull., 12, 413 (1964).
(6) R. G. Stehle and W. I. Higuchi, J. Pharm. Sci., 56, 1367 (1967).
(7) A. Suzuki, W. I. Higuchi, and N. F. H. Ho, ibid., 59, 644 (1970).
(8) Ibid., 59, 651 (1970).
(9) R. G. Stehle and W. I. Higuchi, J. Pharm. Sci., 61, 1922 (1972).
(10) Ibid., 61, 1931 (1972).
(11) G. L. Flynn and S. H. Yalkowsky, J. Pharm. Sci., 61, 838 (1972).
(12) S. H. Yalkowsky and G. L. Flynn, ibid., 62, 210 (1973).
(13) J. G. Wagner and A. J. Sedman, J. Pharmacokinet. Biopharm., 1,23 (1973).
(14) J. G. Wagner, "Fundamentals of Clinical Pharmacokinetics," Drug Intelligence Publications, Hamilton, Ill., 1975, p. 203 ff .
(15) H. Kubinyi, Arzneim.-Forsch., 26, 1991 (1976).
(16) H. Kubinyi, J. Med. Chem., 20, 625 (1977).

[^0]: ${ }^{a} \log k_{1}$ and $\log k_{2}$ values were combined because both values are predicted by Eqs. 8 and 9 using the same a, b, β, and c values. ${ }^{b}$ The $(n-4)$ degrees of freedom;

